FAA-FPI

History and Introduction

Presented to: DOD Working Group By: Alfred L. Broz Date: November 1, 2006

Alfred L. Broz, Ph.D. Chief Scientist Technical Advisor NonDestructive Evaluation (NDE)

FAA ANE 105N

Tel: (781) 238-710512 New England Executive ParkFax: (781) 238-7898Burlington, MA 01803-5213

Federal Aviation Administration Internet: Alfred.L.Broz@faa.gov

FPI History

 This presentation is based on the documented missed opportunities for FPI to find critical cracks in components

United Airlines Flight 232 Sioux City, Iowa

Delta Air Lines Flight 1288 Pensacola, Florida

Fluorescent Penetrant Inspection Process Technical Review Team

Team Formed: September 12, 1996

Team Charter: Review and evaluate 6 facilities that perform FPI of high energy rotating engine components.

Determine whether systemic problem exists in available guidance or its implementation.

Recommend corrective action.

Conclusion

General:

The observations documented in this report indicate poor quality assurance practices at most of the reviewed FPI facilities

Recommendations

- Conduct Research and Development Programs
 - Perform studies to evaluate the critical parameters in the FPI process

Why is FPI important to aviation?

- A typical U.S. commercial air carrier will have over 30,000 parts in its inventory that will require FPI at some time in its life
- Over 90% of metal components will be inspected using FPI at least once during its lifetime

What are the safety implications?

- Failures of the FPI process have contributed to catastrophic events
 - Sioux City
 - Pensacola
- NTSB recommendations have included reference to improved FPI
 - A98 11 through 15 –
 Recommendations related to improvements to FPI and identification of research needs
- Simplification of the specification process will lead to improved reliability and safety

CASR Background

- Extensive network in place with civil aviation
 - Major U.S. air carriers including interactions with Air Transport Association NDT Working Group
 - NDE organizations at aircraft and engine OEMs
 - Industry committees such as the SAE NDE Committee K, ASNT Aerospace Committee, and the joint Commercial Aircraft Composites Repair Committee (CACRC)

Engineering Assessment of FPI

- The Center for Aviation Systems Reliability (CASR) was established in 1990 to provide results that address the inspection needs of commercial aviation and lead to safety improvements through their implementation
- In September 2001, CASR partnered with industry to begin a new research program entitled Engineering Assessment of Fluorescent Penetrant Inspection
- This website was established to document the results of this and other Federal Aviation Administration (FAA)-funded programs working to improve the reliability of the Fluorescent Penetrant Inspection (FPI) process

http.www.cnde.iastate.edu

Choose the FPI Research Option.

 General ISU laboratory and measurement support

• Technology transfer

workshops

Federal Aviation

Administration

Partners

- Iowa State University
- Boeing Long Beach
- Boeing Seattle
- Delta Air Lines
- United Airlines
- Pratt & Whitney
- Rolls Royce
- General Electric
- Sherwin Inc.
- D&W Enterprises
- FAA

Approach

• Define factors for which engineering data is deficient

- Change in process, e.g., environmental changes
- Change in applications
- Data not available in the public domain
- Design engineering study that provides quantitative assessment of performance
 - Brightness measurements
 - Digital recording of UVA indication
 - Probability of Detection
 - Complete study using either lb or shop facilities as appropriate
- Distribute results through use of the World Wide Web
- Support changes to industry specifications as warranted
- Utilize results to update/create guidance materials
- Transition process to airlines for internal self-assessment

Technical Results

Spot Meter Spot Size versus Brightness, October 2002 ATA FPI Workshop Presentations Engineering Studies Plan Year One Status Drying Study Final Report – May 2003 ATA NDT Forum – Status Presentation – September 2003

Publications

FAA Reports Link

Study of the Factors Affecting the Sensitivity of Liquid Penetrant Inspections: Review of Literature Published from 1970 to 1998

ES – 9 Drying Study 5-5-2003

Engineering Studies of Cleaning and Drying processes in Preparation for Fluorescent Penetrant Inspection

Commercial:

- Take advantage of the opportunity to tour the FAA's Airworthiness Assurance Non destructive Testing Validation Center (AANC).
- Samples from a 747 and smaller

